如何用好題目中的條件暗示

編輯: 逍遙路 關鍵詞: 初中數學 來源: 高中學習網


有一類題目,我們在解前面幾小題時,其解題思路和方法往往對解后面問題起著很好的暗示作用,現(xiàn)以一次函數中出現(xiàn)的兩道題目為例予以說明,供同學們在學習過程中參考。
【例1】直線與x軸、y軸分別交于B、A兩點,如圖1。

圖1
(1)求B、A兩點的坐標;
(2)把△AOB以直線AB為軸翻折,點O落在平面上的點C處,以BC為一邊作等邊△BCD。求D點的坐標。
解析:(1)容易求得,A(0,1)。
(2)如圖2,

圖2
∵,A(0,1),
∴OB=,OA=1。
∴在Rt△AOB中,容易求得∠OBA=30°
∵把△AOB以直線AB為軸翻折,
∴∠OBC=2∠OBA=60°,BO=BC。
∴△OBC是等邊三角形
以BC為一邊作等邊△BCD,則D的落點有兩種情形,可分別求得D的坐標為(0,0),。
反思:在求得第(1)小題中B、A兩點的坐標分別為B(,0),A(0,1),實質上暗示著Rt△AOB中,OA=1,OB=,即暗示著∠OBA=30°,為解第(2)小題做了很好的鋪墊。

【例2】直線與x軸、y軸分別交于A、B,以線段AB為直角邊在第一象限內作等腰Rt△ABC,∠BAC=90°,且點P(1,a)為坐標系中的一個動點,如圖3。

圖3
(1)求三解形ABC的面積。
(2)證明不論a取任何實數,三角形BOP的面積是一個常數;
(3)要使得△ABC和△ABP的面積相等,求實數a的值。
解析:(1)容易求得:A(,0),B(0,1),
∴。
(2)如圖4,連接OP、BP,過點P作PD垂直于y軸,垂足為D,則三角形BOP的面積為,故不論a取任何實數,三角形BOP的面積是一個常數。

圖4
(3)如圖4,①當點P在第四象限時由第(2)小題中的結果:,和第(3)小題的條件可得:
∴,
∵,
∴,∴。
②如圖5,當點P在第一象限時,用類似的方法可求得a=。

圖5
反思:由第(1)小題中求得的和第(2)小題中證明所得的結論:三角形BOP的面積是一個常數,實質上暗示著第(3)小題的解題思路:利用
來解。
通過這兩道題目的分析可以發(fā)現(xiàn),在解題過程中,如果經�;仡^看一看、想一想,我們往往會發(fā)現(xiàn),很多題目的解題思路原來就在題目之中。


本文來自:逍遙右腦記憶 http://www.simonabridal.com/chuzhong/53679.html

相關閱讀:初中數學知識點總結:概率的簡單應用

闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 bjb@jiyifa.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷