賀州高級中學(xué)2015-2014學(xué)年上學(xué)期期考試題高 二 數(shù) 學(xué)(理)注意事項(xiàng):.試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,共150分,考試時(shí)間120分鐘.第Ⅰ卷為單項(xiàng)選擇題,請將選擇題答題卡上的答案用2B鉛筆涂黑,務(wù)必填涂規(guī)范.第Ⅱ卷為填空題和解答題,請用0.5mm的黑色簽字筆在答題卷上作答第Ⅰ卷(選擇題共60分).1.下列命題中的假命題是( )(A) (B)(C) (D)2.已知,則下列不等式正確的是(A) (B) (C) (D).設(shè)等差數(shù)列的前項(xiàng)和為,且,,則( )(A)60 (B)70 (C)90 (D)404.與向量平行的一個(gè)向量的坐標(biāo)是( )(A)(,1,1) (B)(-1,-3,2) (C)(-,,-1) (D)(,-3,-2).的準(zhǔn)線方程是( )(A)(B)(C)(D).的導(dǎo)數(shù)為( )(A)(B)(C)(D).在中,已知,則角為( )(A)(B)(C)(D) 或.下面四個(gè)條件中,使>成立的充分而不必要的條件是( )(A)> (B)> (C)> (D)>.軸上的雙曲線的離心率為,則該雙曲線的漸近線方程為( )(A)(B) (C) (D)10.已知平行六面體中,,,,,,則等于( )(A) (B) (C) (D).設(shè)是定義在上的奇函數(shù),且當(dāng)時(shí),有恒成立,則不等式的解集是(A) (B)(C) (D).點(diǎn)是雙曲線與圓:的一個(gè)公共點(diǎn),且,其中分別為雙曲線的左右焦點(diǎn),則雙曲線的離心率為(A)(B)(C)(D)13.在點(diǎn)處的切線方程為 .14.在平面區(qū)域上,點(diǎn)在曲線上,那么的最小值為 .15.的前項(xiàng)和,則數(shù)列的通項(xiàng) .16.已知當(dāng)取得最小值時(shí),直線與曲線的交點(diǎn)個(gè)數(shù)為 三、解答題本大題共6小分解答應(yīng)寫出文字說明,證明過程或演算步驟的命題,若是的充分不必要條件,求的取值范圍.18.(本小題滿分12分)已知,,分別為三個(gè)內(nèi)角,,的對邊,.(Ⅰ)求大��;(Ⅱ)若的面積為求,.在數(shù)列中,,,.(Ⅰ)證明數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項(xiàng)和;(Ⅲ)證明不等式,對任意皆成立.如圖,在多面體中,底面是正方形,平面,//,(Ⅰ)求證:;(Ⅱ)點(diǎn)在棱上,當(dāng)?shù)拈L度為多少時(shí),直線與平面成角?21.(本小題滿分12分)設(shè)函數(shù), (Ⅰ)的值;(Ⅱ)的取值范圍.22.(本小題滿分12分)已知橢圓的離心率為,過點(diǎn)和的直線與原點(diǎn)的距離為.(Ⅰ)(Ⅱ),若直線與橢圓交于、兩點(diǎn),問:是否存在的值,使得以為直徑的圓過點(diǎn)?請說明理由.賀州高級中學(xué)2015-2015學(xué)年上學(xué)期期考試題參考答案高 二 數(shù) 學(xué)(理)一、選擇題: 二、填空題:13.,14. 15. 16.2個(gè) ∴當(dāng)命題為真命題時(shí), ………………………………………3分由∵,∴,則上式解得∴當(dāng)命題為真命題時(shí), …………………………………7分∵是的充分不必要條件,則是的真子集,∴……………………………………………………………10分18、解:(Ⅰ),由正弦定理可得, …………………………………2分又∵,則上式可化為………………4分∵,∴,得 …………………………………………6分(Ⅱ) ∵,由題設(shè)知 ∴---① ………………8分由余弦定理得,得---②………………10分由①②解得 …………………………………………………………12分19、解:(Ⅰ) 故 即, ………………………3分又當(dāng)時(shí), ………………………………………………………………………4分故數(shù)列為等比數(shù)列,且 ∴ …………………………………………6分(Ⅱ) ……………………………………………………………9分所以.……………12分20、解:如圖,由題設(shè)可分別以、、為、、軸,建立空間直角坐標(biāo)系 ………1分(Ⅰ)由題設(shè)可知,,,,則,……………………………3分∴,則有所以 ……………………………………………………5分(Ⅱ) 設(shè)∵點(diǎn)在棱上,即,可得∴ …………………………………………………………7分由題設(shè)易知平面,∴平面的一個(gè)法向量是 ………………………8分∵與平面所成角為,則有 ………10分解之得又∵,∴即當(dāng)時(shí),直線與平面角.21、解:(Ⅰ)的定義域?yàn)�,又�?……………………2分由已知,解得 ………………………………………3分經(jīng)驗(yàn)證得符合題意……………………………………………………………………4分(Ⅱ)若在上為增函數(shù),則對恒成立,, ∵ ∴ …………………………………7分因?yàn)�,所以的最大值為………………�?0分所以的最小值為,由此可得當(dāng)時(shí)對恒成立,綜上所述,當(dāng)在上為增函數(shù)時(shí),.……………………………12分22、(Ⅰ)由已知可得-----① ……………………1分直線的方程為:,則原點(diǎn)到直線的距離-----② ……3分由①②解得,,所以橢圓的方程為 ………………………………………5分(Ⅱ)由, 得………………………………6分∵直線與橢圓相交于、兩點(diǎn)∴,得……………………………………7分設(shè),,由韋達(dá)定理得------③,-------④而-------⑤ ………………9分若以為直徑的圓過點(diǎn),則有,即,代入③④⑤式得,滿足 …………………11分綜上,存在,使得以為直徑的圓過點(diǎn). ………………………………12分高二理科數(shù)學(xué) 第1頁(共4頁)高二理科數(shù)學(xué) 第2頁(共4頁)高二理科數(shù)學(xué) 第3頁(共4頁)高二理科數(shù)學(xué) 第4頁(共4頁)高二期考理科數(shù)學(xué)參考答案 第1頁(共3頁)高二期考理科數(shù)學(xué)參考答案 第2頁(共3頁)高二期考理科數(shù)學(xué)參考答案 第3頁(共3頁)廣西賀州高級中學(xué)2015-2016學(xué)年高二上學(xué)期期考數(shù)學(xué)(理)試題
本文來自:逍遙右腦記憶 http://www.simonabridal.com/gaoer/413693.html
相關(guān)閱讀:黑龍江省牡丹江一中2015-2016學(xué)年高二上學(xué)期期末數(shù)學(xué)理試題 Word
闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 bjb@jiyifa.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷