內蒙古包頭三十三中屆高三上學期期中2考試數學(理)試題Word版

編輯: 逍遙路 關鍵詞: 高三 來源: 高中學習網


試卷說明:

包頭市第三十三中學第一學期試卷高三年級期中(Ⅱ)理科數學命題人:周環(huán)在 審題:教科室 -11-14選擇題(每小題5分,共60分。下列每小題所給選項只有一項符合題意,請將正確答案的序號填涂在答題卡上)1.復數 z 滿足 z(1 i) 1 2i ( i 為虛數單位),則復數 z 在復平面內所對應的點在( )A.B.z(1 i) 1 2i,所以,所以復數 z 在復平面內所對應的點在第四象限。2.設全集U=R,則右圖中陰影部分表示的集合為 ( )A.B. D.【答案】B【解析】所以右圖中陰影部分表示的集合為。3. 已知、是兩條不同的直線,、是兩個不同的平面,給出下列命題:①若,則;②若,且則;③若,則;④若,,且,則.其中正確命題的是(  )A.B.C.D.①若,則可能平行、相交或異面;②若,且則③若,則;④若,,且,則.4. 定義在R上的可導函數,已知的圖象如圖所示, 則的增區(qū)間是( )A. B. C. D.【答案】A【解析】由圖可知:恒成立且不恒為0;恒成立。所以的增區(qū)間是。5. 已知數列滿足,則的前10項和等于A. B C. D.【答案】C【解析】因為,所以,所以數列是公比為的等比數列,所以的前10項和等于滿足,,則的值是 ( )A.B.,因為,所以。7. △外接圓的半徑為,圓心為,且, ,則等于 ( )A.B. D.【答案】C【解析】因為,所以O為邊BC的中點,且,又,所以,所以=3.8. 若函數又且的最小值為則正數的值為( )A. B. C. D. 【答案】B【解析】因為且的最小值為所以T=3π,所以正數。9.某四棱錐的三視圖如圖所示,則最長的一條側棱長度是A.B. D.【答案】B【解析】由三視圖可知:該幾何體是一個四棱錐,如圖所示,側棱PD⊥底面ABCD,PD=2,底面ABCD是一個直角梯形,AD∥BC,AD⊥DC,AD=2,DC=3,BC=4,BD=5.所以最長的一條側棱PB,其長度是 .10.已知各項均為正數的等比數列滿足,若存在兩項使得的最小值為 ( 。〢.B. C. D.9【答案】A【解析】因為,所以,由得:,所以,當且僅當時等號成立,所以的最小值為。11.設滿足約束條件,則的取值范圍是( )A. B. C. D.約束條件,的直線的斜率,所以結合可行域知:過點(0,4)時取最大值5;當點在y=x線上時,取最小值1,所以的取值范圍是已知函數,若≥,則的取值范圍是A. B. D.【答案】D【解析】因為=,所以由≥得,且;由可得,則≥-2,排除A,B,當=1時,易證對恒成立,故=1不適合,排除C,故選D.二、填空題(每題5分,共20分。把答案填在答題紙的橫線上)13.已知向量,則_ _.【答案】5【解析】,所以5.14.曲線在點處的切線經過點,則,所以,所以曲線在點處的切線,把點代入得。15.已知函數對任意的恒成立,則 .【答案】【解析】易知函數是奇函數,且在其定義域內為單調遞增,所以由得:,即在時恒成立,令,則只需滿足,解得。16. 下列幾個命題:① 不等式的解集為;② 已知 均為正數,且,則的最小值為9;③ 已知,則的最大值為;④ 已知均為正數,且,則的最小值為7;其中正確的有         .(以序號作答)②④【解析】① 由得:,所以不等式的解集為;② 已知 均為正數,且,則的最小值為9;③ 已知,則時取等號,但無解,所以取不到最大值;④ 已知均為正數,且,則時取等號,所以的最小值為7;(本大題共個小題,共分) 等差數列的前項和為,已知,且成等比數列,求的通項式.分別在射線(不含端點)上運動,,在中,角、、所對的邊分別是、、. (Ⅰ)若、、依次成等差數列,且公差為2.求的值; (Ⅱ)若,,試用表示的周長,并求周長的最大值.19. (本題滿分12分) 某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為,當年產量不足80千件時,(萬元).當年產量不小于80千件時,(萬元).每件商品售價為500元.通過市場分析,該廠生產的商品能全 部售完.(Ⅰ)寫出年利潤(萬元)關于年產量(千件)的函數解析式;(Ⅱ)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?20.(本題滿分12分)如圖,在直三棱柱中,,分別是棱上的點(點 不同于點),且為的中點.求證:(1)平面平面;(2)直線平面.數列的前項和,且是和的等差中項,等差數列滿足,(1)求數列、的通項公式;(2)設,數列的前項和為.22. (本題滿分12分)已知函數()求函數單調區(qū)間;()若存在,使得是自然對數的底數),求實數的取值范圍. 16: ②④三、17.18. 解(Ⅰ)、、成等差,且公差為2,、. 又,,, , 恒等變形得 ,解得或.又,. …………6分(Ⅱ)在中,, ,,. 的周長 ,………10分又,, 當即時,取得最大值. ……………………12分 19.為1000萬元. --------------------12分20. 證明:(1)∵是直三棱柱,∴平面. 又∵平面,∴. 又∵平面,∴平面. 又∵平面,∴平面平面. (2)∵,為的中點,∴. 又∵平面,且平面,∴. 又∵平面,,∴平面. 由(1)知,平面,∴∥. 又∵平面平面,∴直線平面 1)∵是和的等差中項,∴ 當時,,∴ 當時,, ∴ ,即 3分∴數列是以為首項,為公比的等比數列,∴, 5分設的公差為,,,∴ ∴ 6分(2) 7分∴ 9分∵,∴ 10分∴數列是一個遞增數列 ∴. 綜上所述, 22. 解:⑴. 在上是增函數, …………………………分又,所以不等式的解集為,故函數的單調增區(qū)間為.………………………………………………分⑶因為存在,使得成立,而當時,,所以只要即可. 又因為,,的變化情況如下表所示:減函數極小值增函數所以在上是減函數,在上是增函數,所以當時,的最小值,的最大值為和中的最大值.因為,令,因為,所以在上是增函數.而,故當時,,即;所以,當時,,即,函數在上是增函數,解得; 內蒙古包頭三十三中屆高三上學期期中2考試數學(理)試題Word版含解析
本文來自:逍遙右腦記憶 http://www.simonabridal.com/gaosan/1095253.html

相關閱讀:江蘇省鎮(zhèn)江市屆高三期末考試數學試卷(word版)