【—一元二次方程知識(shí)】一元二次方程的知識(shí)為初等數(shù)學(xué)知識(shí),一般在初三就有學(xué)習(xí),同時(shí)也是中考的熱點(diǎn)。
一元二次方程
定義
只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是2次的整式方程叫做一元二次方程( quadratic equation of one variable 或 a single-variable quadratic equation)。
一元二次方程有三個(gè)特點(diǎn):
(1)含有一個(gè)未知數(shù);
(2)且未知數(shù)的最高次數(shù)是2;
(3)是整式方程.要判斷一個(gè)方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進(jìn)行整理.如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個(gè)方程就為一元二次方程.里面要有等號(hào),且分母里不含未知數(shù)。
補(bǔ)充說明
3、方程的兩根與方程中各數(shù)有如下關(guān)系: X1+X2= -b/a,X1·X2=c/a(也稱韋達(dá)定理)
4、方程兩根為x1,x2時(shí),方程為:x2-(x1+x2)X+x1x2=0 (根據(jù)韋達(dá)定理逆推而得)
5、在系數(shù)a>0的情況下,b2-4ac>0時(shí)有2個(gè)不相等的實(shí)數(shù)根,b2-4ac=0時(shí)有兩個(gè)相等的實(shí)數(shù)根,b2-4ac<0時(shí)無實(shí)數(shù)根。(在復(fù)數(shù)范圍內(nèi)有兩個(gè)復(fù)數(shù)根)
一般式
ax2+bx+c=0(a、b、c是實(shí)數(shù),a≠0)
例如:x2+2x+1=0
配方式
a(x+b/2a)2=(b2-4ac)/4a
兩根式(交點(diǎn)式)
a(x-x1)(x-x2)=0
通常情況下,一般二次函數(shù)與反比例函數(shù)就會(huì)涉及到一元二次方程的解法。
本文來自:逍遙右腦記憶 http://www.simonabridal.com/chuzhong/241780.html
相關(guān)閱讀:數(shù)學(xué)思想是命題趨勢
鐗堟潈澹版槑锛氭湰鏂囧唴瀹圭敱浜掕仈缃戠敤鎴疯嚜鍙戣础鐚紝璇ユ枃瑙傜偣浠呬唬琛ㄤ綔鑰呮湰浜恒€傛湰绔欎粎鎻愪緵淇℃伅瀛樺偍绌洪棿鏈嶅姟锛屼笉鎷ユ湁鎵€鏈夋潈锛屼笉鎵挎媴鐩稿叧娉曞緥璐d换銆傚鍙戠幇鏈珯鏈夋秹瀚屾妱琚镜鏉�/杩濇硶杩濊鐨勫唴瀹癸紝璇峰彂閫侀偖浠惰嚦 bjb@jiyifa.com 涓炬姤锛屼竴缁忔煡瀹烇紝鏈珯灏嗙珛鍒诲垹闄ゃ€�