《數(shù)學課程標準》指出:“教師應向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探究和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動的經(jīng)驗!鼻疤K聯(lián)著名教育家斯托利亞爾在他所著的《數(shù)學教育學》一書中指出:“數(shù)學教學是數(shù)學活動的教學(思維活動的教學)。”所謂數(shù)學活動,是指把數(shù)學教學的積極性概念作為具有一定結(jié)構(gòu)的思維活動的形式和發(fā)展來理解的。按這種解釋,數(shù)學活動教學所關(guān)心的不是活動的結(jié)果,而是活動的過程,讓不同思維水平的兒童去研究不同水平的問題,從而發(fā)展學生的思維能力,開發(fā)智力。
一、運用現(xiàn)有知識結(jié)構(gòu)組織教學活動
新課程改革強調(diào)教學的三維目標:即知識與技能、過程與方法、情感態(tài)度與價值觀。知識和思維是互相聯(lián)系的,在進行某種思維活動的教學之前,首先要考慮學生的現(xiàn)有知識結(jié)構(gòu)。在教學中只有了解學生的知識結(jié)構(gòu),才能進一步了解思維水平,考慮教新知識基礎是否夠用,用什么樣的教法來完成數(shù)學活動的教學。
例如:在講解一元二次方程[a(x)2+bx+c=0a≠0]時,討論它的解,須用到配方法,或因式分解法等等,那么上課前教師要清楚這些方法學生是否掌握,掌握程度如何,這樣,活動教學才能順利進行。
二、運用學生思維結(jié)構(gòu)組織教學活動
數(shù)學教學是數(shù)學思維活動的教學,進行數(shù)學教學時自然應考慮學生現(xiàn)有的思維活動水平。要使數(shù)學教學成為數(shù)學活動的教學,必須了解學生的思維水平。學習數(shù)學有以下幾種思維形式。
1、逆向思維。與由條件推知結(jié)論的思維過程相反,先給出某個結(jié)論或答案,要求使之成立各種條件。比如說,給一個濃度問題,我們列出一個方程來;反過來,給一個方程,就能編出一個濃度方面的題目。后者就屬于逆向型思維。
2、造例型思維。某些條件或結(jié)論常常要用例子說明它的合理性,也常常要用反例證明其不合理性。根據(jù)要求構(gòu)造例子,往往是由抽象回到具體,綜合運用各種知識的思考過程。例如:試求其反函數(shù)等于自身的函數(shù)。
3、歸納型思維。通過觀察,試驗,在若干個例子中提出一般規(guī)律。
4、開放型思維。即只給出研究問題的對象或某些條件,至于由此可推知的問題或結(jié)論,由學生自己去探索。比如讓學生觀察y=sinx的圖象,說出它的主要性質(zhì),并逐一加以說明。在教學中,結(jié)合教材的特點,運用有效的教學方法,思維活動的教學定能收到良好效果。
三、運用教材的邏輯結(jié)構(gòu)組織教學活動
我們現(xiàn)有的中學數(shù)學教材內(nèi)容有的是按直線式排列,有的是按螺旋式排列。如果進行數(shù)學活動的教學,教材的邏輯結(jié)構(gòu)就應有相應的變化。比方說,關(guān)于一元一次方程應用題,中學課本里有濃度問題、行程問題、工程問題、等積問題,在講解時,可用一個方程表示不同問題,使他們得到統(tǒng)一,只是問題形式不同而已,其方程形式?jīng)]有什么本質(zhì)差異,可一次講完幾個問題。而現(xiàn)有中學教材把它們分開,使學生覺得似乎幾種問題毫不相干。因為這些問題具體不同的思維形式,要受小學、初中和高中學生各階段思維發(fā)展不同特點的制約。
數(shù)學思維活動的教學,就是要盡量克服這些制約,使學生在短期內(nèi)高質(zhì)量獲取知識,大幅度提高思維能力,完成學習任務。數(shù)學活動教學,不僅考慮初等數(shù)學之特點、教材的邏輯結(jié)構(gòu),而且具體的某段知識也要仔細研究,不同性質(zhì)的內(nèi)容用不同方法去處理,這就是下面要談的積極的教學方法問題。
首頁上一頁12下一頁末頁共2頁
本文來自:逍遙右腦記憶 http://www.simonabridal.com/gaozhong/952184.html
相關(guān)閱讀:名師指點:如何要數(shù)學學習變得輕松