向量加法的定義:
已知非零向量a,b,在平面內(nèi)任取一點(diǎn)A,作,再做向量
,則向量
叫做
與
的和,即
。
作向量的加法有“三角形法則”和“平行四邊形法則”,其中“平行四邊形法則”只適用于不共線的向量。
向量加法的三角形法則:
已知非零向量a,b,在平面內(nèi)任意取一點(diǎn)A,作a,
,



向量加法的平行四邊形法則:
以同一點(diǎn)O起點(diǎn)的兩個(gè)已知向量a,b為鄰邊作平行四邊形OACB,則以O(shè)為起點(diǎn)的對(duì)角線OC就是a與b的和,這種作兩個(gè)向量和的方法叫做向量加法的平行四邊形法則,如圖.

向量減法的定義:
向量與向量
的相反向量的和,叫做向量
與向量
的差,記作:
。
作向量減法有“三角形法則”:設(shè),那么
,由減向量和終點(diǎn)指向被減向量和終點(diǎn)。
注意:此處減向量與被減向量的起點(diǎn)相同。
向量減法的作圖法:







坐標(biāo)運(yùn)算:
已知,則
。
向量加減法的運(yùn)算律:
(1)交換律:;
(2)結(jié)合律:
求向量的和的三角形法則的理解:
使用三角形法則特別要注意“首尾相接”,具體做法是把用小寫(xiě)字母表示的向量,用兩個(gè)大寫(xiě)字母表示(其中后面向量的起點(diǎn)與其前一個(gè)向量的終點(diǎn)重合,即用同一個(gè)字母表示),則由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量終點(diǎn)的有向線段就表示這些向量的和。對(duì)于n個(gè)向量,仍有 這可以稱為向量加法的多邊形法則。
作兩個(gè)向量的和向量,可分四步:
①取點(diǎn),注意取點(diǎn)的任意性;
②作相等向量,分別作與兩個(gè)已知向量相等的向量,使它們的起點(diǎn)重合;
③作平行四邊形,以兩個(gè)向量為鄰邊作平行四邊形;
④作和向量,與兩個(gè)向量有共同起點(diǎn)的對(duì)角線作為和向量,共同的起點(diǎn)作為和向量的起點(diǎn),對(duì)角線的另一個(gè)端點(diǎn)作為和向量的終點(diǎn).當(dāng)兩個(gè)向量不共線時(shí),三角形法則和平行四邊形法則是一致的;當(dāng)兩個(gè)向量共線時(shí),三角形法則同樣適用,而平行四邊形法則就不適用了.
向量的加法需要說(shuō)明的幾點(diǎn):
①當(dāng)兩個(gè)非零向量a與b不共線時(shí),a+b的方向與a,b的方向都不相同,且
②當(dāng)兩個(gè)非零向量a與b共線時(shí),
a.向量a與b同向(如下圖),即向量a+b與a(或b)方向相同,且
b.向量a與b反向(如上圖)且|a|<|b|時(shí),即a+b與b方向相同(與a方向相反),且
綜上可知
向量減法的理解:
①定義向量減法是借助了相反向量和向量加法,其實(shí),向量減法的實(shí)質(zhì)是向量加法的逆運(yùn)算.兩個(gè)向量的差仍是向量;
②作差向量時(shí),作法一較為復(fù)雜,作法二較為簡(jiǎn)捷,應(yīng)根據(jù)問(wèn)題的需要靈活運(yùn)用;
③以為鄰邊作平行四邊形ABCD,則兩條對(duì)角線表示的向量為
這一結(jié)論在以后的應(yīng)用是非常廣泛的,應(yīng)該加強(qiáng)理解并記住;
④對(duì)于任意一點(diǎn)O,簡(jiǎn)記為“中減起”,在解題中經(jīng)常用到,必須記�。�
本文來(lái)自:逍遙右腦記憶 http://www.simonabridal.com/gaozhong/800350.html
相關(guān)閱讀:新課程標(biāo)準(zhǔn)下數(shù)學(xué)課堂教學(xué)的反思
闂傚倸鍊烽懗鍓佸垝椤栫偑鈧啴宕ㄧ€涙ê浜辨繝鐢靛Т閸婂绱撳鑸电厱妞ゆ劑鍊曢弸鏃堟煟濠靛棛鍩i柡宀嬬到铻栭柍褜鍓熼幃褎绻濋崶椋庣◤闂佸搫绋侀崢浠嬫偂閵夛妇绠鹃柟瀵稿仧閹冲懏銇勯敐鍛骇缂佺粯绻堥崺鈧い鎺嶇椤曢亶鏌℃径瀣仸妞ゃ儲绻堝娲箹閻愭彃濡ч梺鍛婂姀閺呮粌鈻撴禒瀣拺閻犲洤寮堕幑锝夋煙閾忣偅灏柨鏇樺灲閺屽棗顓奸崨顔锯偓顒勬煛婢跺﹦澧戦柛鏂块叄閵嗗懘寮婚妷锔惧幍闂佺粯鍨惰摫缁炬崘宕电槐鎺楊敊閼恒儱鏆楃紓浣介哺閹瑰洤鐣峰鈧崺鈩冩媴鏉炵増鍋呴梻鍌欐祰濡椼劑姊藉澶婄9婵犻潧顑囧畵渚€鎮楅敐搴℃灍闁稿浜濋妵鍕冀閵娧屾殹濡炪倖鏌ㄥú顓烆潖濞差亜宸濆┑鐘插閸n參姊洪幖鐐插闁稿鍔曢埥澶愭偨缁嬭法鍔﹀銈嗗笒鐎氼參鎮¢悢鍛婂弿婵☆垳鍘х敮鑸电箾閸涱喚鎳呯紒杈ㄥ笚濞煎繘濡歌閻eジ姊鸿ぐ鎺濇濠电偐鍋撴繝纰夌磿閸忔﹢寮崒鐐村仼閻忕偟枪娴滅偓銇勯弴妤€浜鹃梺璇″枛閸㈡煡鍩㈡惔銈囩杸闁圭虎鍨版禍鎯р攽閻樺疇澹樼痪鎯ь煼閺屻劌鈹戦崱姗嗘¥濡炪倐鏅濋崗姗€寮诲☉妯锋闁告鍋涢~鈺呮⒑鏉炴媽顔夐柡鍛█楠炲啰鎹勭悰鈩冾潔闂佸搫璇為崘鍓р偓杈╃磽閸屾艾鈧摜绮旈棃娴虫盯宕橀鑲╃枃闂佽宕橀褍顔忓┑鍥ヤ簻闁哄啫娲よ闁诲孩淇哄▍鏇犳崲濞戞埃鍋撳☉娆嬬細闁活厼顑呴湁婵犲ň鍋撶紒顔界懇瀹曟椽鍩€椤掍降浜滈柟鍝勬娴滈箖姊虹粙鍖″姛闁硅櫕鎹囬弫鍐閵堝懐顓煎銈嗘⒐閸庡啿鐣烽妷銉㈡斀闁绘劕寮堕ˉ婊勭箾鐎电ǹ鍘撮柟顖氳嫰閻f繈宕熼鍌氬箥缂傚倸鍊烽悞锕傛晪婵犳鍠栭崯鎵閹烘梹宕夐柧蹇涒偓娑氶┏缂傚倷绀侀惌鍌涚閸洖鏄ラ柛鏇ㄥ灠缁€鍐喐韫囨洜鐭嗛柍褜鍓熷铏规嫚閹绘帩鍔夌紓浣割儐鐢繝寮€n喗鈷戠紒瀣儥閸庡繒绱掓径濠傤暢闁告帗甯掗~婵嬵敄閻愬瓨銇濇い銏℃瀹曨亪宕橀鍕劒闂傚倸鍊风粈渚€骞栭锔藉亱闁糕剝鐟ч惌鎾绘倵濞戞鎴﹀矗韫囨稒鐓熼柡鍌氱仢閹垿鏌¢崪浣稿⒋闁诡喗锕㈤幃娆戞崉鏉炵増鐫忛梻浣藉吹閸犳劗鎹㈤崼銉ヨ摕闁绘梻鍘ч崙鐘炽亜閹扳晛鐏╁┑顔芥礀閳规垿鎮╅顫濠电偞鎸婚崺鍐磻閹炬惌娈介柣鎰皺鏁堥梺绯曟杹閸嬫挸顪冮妶鍡楃瑨閻庢凹鍓涢埀顒佽壘椤︻垶鈥︾捄銊﹀磯濞撴凹鍨伴崜杈╃磽閸屾氨袦闁稿鎹囧缁樻媴閻熼偊鍤嬬紓浣割儐閸ㄥ墎缂撴禒瀣睄闁稿本绮庨悾鑸电節閵忥絽鐓愰柛鏃€娲滅划濠氬Ψ閳哄倻鍘电紓浣割儏濞硷繝顢撳Δ浣典簻閹兼番鍨哄畷宀勬煛瀹€瀣М闁糕晪绻濆畷妤呮晝閳ь剛绱炴繝鍌滄殾闁挎繂鐗滃Σ濠氭⒑瀹曞洨甯涙俊顐㈠暙椤曪綁骞橀钘夆偓鐑芥煕韫囨挻鎲搁柣顓燁殜濮婃椽鎳¢妶鍛咃綁鏌涢弬鐐叉噹缁躲倕鈹戦崒婧撳湱绮婚弻銉︾厪闊洤顑呴埀顒佹礉缁绘岸姊绘担鍛靛綊寮甸鍕闁荤喐鍣村ú顏勎у璺侯儑閸樺崬鈹戦悙鍙夘棡闁告梹娲熼幃姗€鍩¢崒銈嗩啍闂佺粯鍔曞鍫曞窗濡皷鍋撳▓鍨灓闁轰礁顭烽妴浣肝旈崨顓狅紲濠电姴锕ら崯鎶筋敊婢舵劖鈷掑ù锝呮啞閹牓鏌eΔ鈧Λ婵婃闂佽顔栭崰姘舵儗閹剧粯鐓曢柨鏃囶嚙楠炴劙鏌涚€n偅灏い顐g箞椤㈡鎷呯憴鍕伆婵犵數濮撮惀澶愬Χ閸曨偅鍎撻梻浣筋嚃閸n噣宕抽敐澶堚偓浣肝熺悰鈩冩杸闁诲函缍嗛崑鍛存偩閸洘鈷掑ù锝呮啞閹牊銇勮閸嬫捇姊洪悷鏉挎闁瑰嚖鎷�/闂傚倷绀侀幖顐λ囬锕€鐤炬繝濠傛噺瀹曟煡鏌涢幇鍏哥凹闁稿繑绮撻弻銈囩矙鐠恒劋绮垫繛瀛樺殠閸婃牜鎹㈠┑瀣棃婵炴垶甯炲﹢鍛攽閻愭彃鎮戦柛鏃€鐟╁濠氭晲婢跺á鈺呮煏婢跺牆鍔村ù鐘层偢濮婃椽宕妷銉ょ捕濡炪倖娲﹂崣鍐春閳ь剚銇勯幒鍡椾壕濠电姭鍋撻柛妤冨亹閺嬪秹鏌曡箛瀣仾妞ゎ偅娲樼换婵嬫濞戞艾顤€闁诲孩纰嶅銊╁焵椤掑倹鍤€閻庢凹鍘奸…鍨熼悡搴g瓘濠电偛妯婃禍婵嬪煕閹寸偑浜滈柟鏉垮绾捐法绱掗幇顓燁棃闁哄本绋撻埀顒婄秵閸嬪棙鏅堕鍌滅<闁稿本绋戝ù顔筋殽閻愬弶顥㈢€殿喖鐖奸獮鎰償椤斿吋娅� bjb@jiyifa.com 濠电姷鏁搁崑鐐哄垂閸洖绠板Δ锝呭暙绾惧鏌熼幆褏鎽犻柛娆忕箻閺屾洟宕煎┑鎰ч梺鍝勬媼閸撶喖骞冨鈧幃娆戞崉鏉炵増鐫忔俊鐐€曠换妤佺椤掑倹顫曢柟鎯х摠婵挳鏌涘┑鍕姢妞ゆ柨顦靛铏圭磼濡粯鍎撶紓浣介哺濞茬喖宕洪埀顒併亜閹哄棗浜惧┑鐘亾闂侇剙绉寸壕鍧楁煙鐎电ǹ校妞ゎ偅娲樼换婵嬫濞戝崬鍓伴柣搴㈣壘椤︿即濡甸崟顖氱闁瑰瓨绺鹃崑鎾诲及韫囧姹楅梺鍝勮閸庢煡宕愰崼鏇犲彄闁搞儯鍔嶇亸鐗堛亜閵壯冣枅闁哄矉绲介埞鎴﹀炊閳哄倸鍨遍柣搴ゎ潐濞叉ê顫濋妸鈺佺闁绘ǹ顕х粻鐢告煙閻戞ɑ鐓i柟顕嗙秮濮婂宕掑顑藉亾閸濄儮鍋撳銉ュ鐎规洘鍔欓獮瀣晝閳ь剟鎮為崹顐犱簻闁圭儤鍩婇弨濠氭倵濮樼偓瀚�